

Separation Technology	Column Diameter	Flow-rate (nL/min)		
High flow LC-MS	2.1 – 4.6 mm	200,000 - 2,000,000		
Microbore LC-MS	1 mm	50,000-200,000		
Microflow LC-MS	0.3-0.5 mm	2,000-50,000		
CE-MS	50-100 μm	2,000 - 4,000		
Nanoflow LC-MS	50-200 μm	100-1500		
CESI-MS	30 µm	< 30		

Détermination de constante de stabilité

	Trastuzumab	Cetuximab	mab in-dev #1	mab in-dev #2
sequence coverage	100%	100%	100%	100%
% MS2 y/b ions	> 90%	> 70 %	> 90%	> 70%
identified glycosylations	15	15	10	16
other PTMs	hotspots			
glutamic acid cyclization	1/1	1/1	1/1	1/1
methionine oxidation	2/2	0/0	2/2	0/0
asparagine deamidation	4/4	4/4	2/2	4/4
aspartic acid isomerization	6/6	2/2	3/3	2/2
R	esults summary obta	ained with the t-ITP	CESI-MS/MS method	
The t-ITP CESI-	MS/MS metho	od developed	d demonstrate	d its robustness
on different s	samples inclu	iding technic	al replicates in	each case

Content of the Study

Assessment of capabilities of CESI-MS/MS for the analysis of 100 ng yeast mitochondrial digest

NanoLC-MS/MS is performed in parallel as a reference method

In the same conditions

- > Using a classical protocol (60 min gradient)
- Same sample condition: 100 ng mitochondrial yeast digest

· CESI-MS/MS

Bare Fused Silica Capillary (90 cm*30µm i.d.) BGE: 1% formic acid (pH 2.1) Sample: yeast mitochondrial digest sample 1 µg/µL (100 ng injected) Voltage: 15 kV Current: 2 to 4 µA Distance between capillary tip and MS: 3 to 8 mm Flowrate: <10 nL/min

MS Conditions

AB SCIEX TripleTOF 5600 System, positive mode, capillary voltage - 1750V, Curtain gas 5, T=75°C, GS1= 0 Mass range: 150-1250 (TOF-MS), 100-2000 (TOF-MS/MS) IDA Top 20 (duty cycle 2.0 sec, mean spectra rate 12.1 Hz)

NanoLC-MS/MS

Eksigent nanoLC 2D plus system with CHiPLC System Pre column: ChromXPC18-CL (200 µm, 0.5 mm, 3 µm, 120Å) Column: ChromXPC18-CL (75 µm, 15 cm, 3µm, 120Å) Gradient: started at 5% B. The concentration of solvent B was increased linearly from 4% to 40% during 50 min and from 50% to 100% during 1 min (solvent A, 0.1% formic acid; solvent B, 0.1% formic acid in 100% acetonitrile) Sample: mitochondrial digest sample 1 µg/µL (100 ng injected) Flowrate: 300 nL/min

MS Conditions

AB SCIEX TripleTOF 5600 System, positive mode, capillary voltage 2300 V, Curtain gas 22, T=150°C, GS1= 5 Mass range: 150-1250 (TOF-MS), 100-2000 (TOF-MS/MS) IDA Top 20 (duty cycle 1.6 sec, mean spectra rate 12.1 Hz)

	CE-UV/MALDI-MS/MS		NanoLC/MALDI-MS/MS		Direct MALDI-MS		Combination of the three deposition modes	
	identified peptides	Sequence coverage	identified peptides	Sequence coverage	identified peptides	Sequence coverage	identified poptides	Sequence coverage
		(%)		(%)		(%)		(%)
βCas	3	22.3	4	20.5	3	14.7	1	34.4
CAII	20	58.8	11	34.2	5	37.7	28	59.6
Cyt C	13	58.1	7	43.8	1	10.5	16	74.3
aLac	9	40.8	12	51.4	1	7.0		63.6
Lys	28	79.6	24	83.0	12	58.5	41	86.7
BSA	55	73.0	68	11.3	13	23.6	113	
Myo	15	85.1		44.2				60.1
Ins Diana A	1	58.8	4	100	2	43.1		100
RHase A	10	100	20	53.5	•	04.4	-	
	Total of id.	AverageSe	Total of id.	AverageSe	Total of id.	AverageSe	Total of M.	Averagelle
	pep.	q. Cov. (%)	pep.	q. Cov. (%)	pep.	q. Cov. (%)	pap.	q. Cov. (%)
	154	64.1	161	60.8	45	27.7	279	78.9
	154	64.1	161	60.8	45	27.7	279	76.4

Conclusion

Développement d'une nouvelle interface CE-UV/MALDI MS

- Modification de 2 appareils commerciaux
 - > Automatisation, Répétable et Robustesse
- Evaluation du système
 - Mélange des protéines entières jusqu'a 150 kDa Digestat de proteines
 - Complémentarité à la LC-MS

SOMMAIRE

- 1. Le couplage CE/MALDI -MS
- 2. Mise au point et évaluation du CE-UV/MALDI-MS
- 3. Mise au point de l'analyse Top DOWN par CE-UV/MALDI-MS

