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A B S T R A C T

Therapeutic monoclonal antibodies (mAbs) are experiencing tremendous developments in terms of novel approved products and applications fields. Nonetheless, 
after administration, mAbs are submitted to a significant number of biological phenomena that may affect their quantity, structure and potency. Moreover, as mAbs 
are not exempt from adverse effects they can trigger immune responses leading to the expression of anti-drug antibodies (ADAs), potentially impacting their efficacy. 
This critical review details the different analytical techniques used for the characterization and quantification of mAbs and ADAs in different contexts from routine 
therapeutic drug monitoring to advanced clinical investigations. In addition, state-of-art approaches providing information regarding mAbs/antigen or mAbs/ADAs 
interaction such as binding affinities are described through impactful applications. Different analytical approaches are discussed including binding assays like ELISA 
and chemiluminescent immunoassay. Similarly, molecular interaction analyses are detailed like surface plasmon resonance and mass photometry. Finally, cutting- 
edge mass spectrometry-based analytical methods are presented with prior liquid chromatography and capillary electrophoresis separation, including the sample 
purification strategies required for the analysis of biological samples. Thus, the critical review discusses the technical requirements, advantages and limitations of the 
different analytical techniques in order to position them depending on the context and information required.

1. Introduction

Monoclonal antibodies (mAbs) have demonstrated an undeniable 
success as therapeutic agents. In 2024, over 125 different mAbs are 
approved for therapeutic use, and more than 200 products are currently 
in clinical trials [1]. Thus, their constant development over the last few 
years has modified the paradigm in the pharmaceutical industry, 
enabling the emergence of the biopharmaceutical field as an important 
actor. The relevance of therapeutic mAbs can be explained by their high 
specificity for their corresponding antigen. Also, their pharmacological 
properties, like extended serum half-life, are particularly interesting for 
therapeutic applications [2]. The expansion of therapeutic mAbs was 
initially driven by oncology and the treatment of immune diseases [3]. 
However, their applications are constantly broadening with the treat
ment of more common conditions like asthma [4]. In addition, the 
introduction of other formats derived from mAbs such as bispecific an
tibodies, antibody-drug conjugates and fusion proteins, are demon
strating the interest of this type of therapeutic protein [5].

Due to their recent introduction as therapeutic agents and the 

increasing number of mAbs, insights regarding their evolution after 
administration remain relatively limited. Thus, after injection of an 
equivalent dose, some patients show a rapid elimination of the mAbs 
whereas in a minor fraction of the treated population, they may be 
detected in the serum several month after administration [6]. In addi
tion, mAbs are not exempt from side effects which may take various 
forms. In particular, over time, a majority of treated patients are 
developing natural antibodies targeting the mAbs product, referred as 
anti-drug antibodies (ADA) [7]. As a consequence, mAb based therapies 
require monitoring during treatment in order to provide an improved 
understanding regarding of mAbs long-term effects and efficacy.

A significant number of analytical methods are focusing on the 
analysis of purified mAbs production, however, they do not allow the 
characterization of mAbs after administration [8]. The growing interest 
regarding the study of the evolution of therapeutic mAbs after their 
administration currently drives the development of innovative analyt
ical methodologies able to tackle the complexity of the biological sam
ples analysis containing mAbs.

This review aims to provide a critical overview of the different 
analytical techniques used for the quantification and characterization of 
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therapeutic mAbs, their corresponding ADAs and measure their affin
ities in biological matrices. The first part is focusing on binding assays 
which represent the earlier approach for the analysis of mAbs in bio
logical samples. In a second part, recent developments regarding mo
lecular interaction analyses are described, especially concerning the 
possibility of using this type of techniques to obtain quantitative infor
mation and measure mAbs/ADAs interactions. Finally, the latest ad
vances concerning mass spectrometry (MS) based analysis for the 
quantification and characterization of mAbs and ADAs are discussed. 
Thus, a particular emphasis on the potential and future developments 
expected concerning MS analysis is discussed for this type of clinical 
applications.

1.1. Monoclonal antibodies

Therapeutic mAbs are based on immunoglobulin G (IgG), which as 
such represent large biomolecules (molecular weight ~150 kDa). 
Because of their extended serum half-life, IgGs are the immunoglobulins 
type of choice for mAbs production [9]. Thus, mAbs are heterodimeric 
molecules composed of four polypeptides: two identical light chains 
(~25 kDa each) and two identical heavy chains (~50 kDa each) as 
emphasized in Fig. 1. Each Fab domain contains 3 
complementary-determining regions (CDR) identified by a high degree 
of amino acid sequence variability and ensure mAb specificity for its 
antigen [10]. CH2 region incorporates a N-glycosylation site expressing a 
significant number of glycans whose structures can influence the 
effector functions of the antibody [11]. The different glycosylation 
forms of mAbs can affect their stability, immunogenicity and clearance 
rate [12,13]. The Fc part interacts with Fc receptors found at the surface 
of cells such as immune cells involved in immune responses. For 
instance, it interacts with the neonatal Fc receptor which is responsible 
for the extended half-life of the mAb [14].

MAbs are complex macromolecules susceptible to physical and 
chemical degradation such as aggregation, denaturation, or post- 
translational modifications (PTMs) [15,16]. Regarding PTMs, Asn dea
midation, Asp isomerization, Met oxidation and C-terminal Lys clipping 
are some of the main types of modification. Their occurrence and 
modification level can have an impact on the stability and the potency of 
the mAb [17]. Also, the localization of PTMs is important as for example 
a change in the CDR region can have an influence on antigen binding 

affinity [18]. Therefore, PTMs including glycosylation represents critical 
quality attributes that are strongly regulated during the manufacturing 
and storage processes [19–21].

Therapeutic drug monitoring (TDM) defines the clinical follow-up of 
treated patients after administration of the drug. Currently, TDM relies 
essentially on the quantification of free mAbs circulating in the patient’s 
serum, potentially to adjust the administration periodicity and dosage 
[22]. However, there is a crucial need to study chemical and structural 
changes of mAbs occurring after administration. Thus, it could provide 
information from a different perspective like the occurrence of major 
PTMs or compare the clearance of the different glycoforms.

1.2. Anti-drug antibodies

The toxicity of mAbs is fairly limited, nevertheless, their adminis
tration may still trigger undesired side effects such as infection suscep
tibility, autoimmune diseases development and immunogenicity [23]. 

Abbreviations list

ABT Antigen Binding Test
ADA Antibody drug-antibody
AE Acridinium Ester
ALP Alkaline Phosphatase
CDR Complementary-Determining Region
CE Capillary Electrophoresis
CID Collision-Induced Dissociation
cIEF Capillary Isoelectric Focusing
CL Chemiluminescence
CLIA Chemiluminescent Immunoassay
ELISA Enzyme-Linked Immunosorbent Assay
ESI Electrospray
ETD Electron-Transfer Dissociation
Fab Fragment antigen-binding
FC Flow Cytometry
Fc Fragment crystallisable
HRP Horseradish Peroxidase
IFX Infliximab
IP Immunoaffinity purification
Ig Immunoglobulins

KD Affinity Constant
koff,kd Dissociation Constant
kon,ka Association Constant
LBA Ligand Binding Assay
LC Liquid chromatography
LLOQ Lowest Limit of Quantification
LOQ Limit of Quantification
LOD Lowest Limit of Detection
mAb Monoclonal Antibody
mELISA Microfluidic biosensor-based ELISA
MP Mass Photometry
MRM Multiple Reaction Monitoring
MS Mass Spectrometry
MS/MS Tandem Mass Spectrometry
NADA Neutralizing Antibody Drug-Antibody
nNADA Non-neutralizing Antibody Drug-Antibody
PTM Post-Translational Modification
RIA Radioimmunoassay
SPR Surface Plasmon Resonance
SRM Selected Reaction Monitoring
SIL Stable-Isotope Labeled
TDM Therapy Drug Monitoring

Fig. 1. Structure of an immunoglobulin G (IgG). The different types of IgG 
differ in disulfide bond numbers and positions.
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Immunogenicity defines the immune response after administration of a 
foreign substance, identified by the immune system as an exogenous 
agent. In the case of mAbs, the immune system may express anti-drug 
antibodies (ADAs), sometimes early in the course of the treatment 
[24]. With regard to the first generation of mAbs, major adjustments 
have been implemented to their structure, notably by limiting the 
incorporation of parts from non-human species in order to reduce their 
immunogenicity [25]. ADAs can be divided into two categories: 
non-neutralizing and neutralizing anti-drug antibodies (NADAs) as 
shown in Fig. 2. NADAs bind to the Fab domain of the mAb which in
hibits its interaction with the antigen [25]. Non-neutralizing ADAs 
(nNADA) bind to the Fc part of the mAb. This interaction induces the 
formation of immune-complexes with the mAb, which are rapidly 
cleared out of the system [26].

ADAs expression could be linked to abnormal decrease of the con
centration of the mAb, a loss of response to the treatment or lower 
remission rates [28,29]. Also, the presence of residual ADAs after 
treatment can generate a negative response in case of further adminis
tration of another mAb, by increasing the sensibility to immune response 
[30,31]. Some mAbs have been identified as more prone to induce 
adverse immune response such as adalimumab and brolucizumab [27,
32].

Concerning TDM, essentially the presence and/or concentrations of 
ADAs are monitored in order to provide individualized treatments for 
each patient [33]. In the vast majority of mAbs treatment, ADAs pro
duction have been identified, however the impact of ADAs on the 
outcome of all treatments, for example in the case of cancer immuno
therapy or new mAbs is still unclear [32,34]. In the case of infliximab, 
TDM in complement with adjusted dosing, has demonstrated to be more 
cost-effective than to increase the dose of the treatment in case of 
reduced response to the treatment [35]. However, ADAs analysis is 
particularly challenging because of their isotypes diversity and amino 
acid sequence variability. Nevertheless, detailed characterization of 
mAbs/ADAs complexes could be included to improve understanding of 
the interactions at the core of immune response in terms stoichiometry, 
affinity and localization.

2. Binding assay analysis

2.1. Enzymatic-linked immunosorbent assay

Enzymatic-linked immunosorbent assay (ELISA) represents the 
standard technique for the quantification of proteins in biological 
samples due to its swiftness, sensitivity, throughput and requires rela
tively simple equipment. ELISA was developed for the quantification of 
infliximab demonstrating great precision and accuracy for concentration 

ranging from 0.10 to 8 μg mL− 1 corresponding to its therapeutic window 
[36]. Because of ELISA ease of use, relevant sensitivity and throughput 
for routine use, different kits were made commercially available for the 
quantification of the most common therapeutic mAbs, which include for 
example infliximab, adalimumab, rituximab, trastuzumab or ustekinu
mab [37]. However, commercial ELISA kits available represent only a 
small fraction compared to the extensive number of therapeutic mAbs 
approved.

ELISA can also be used for the quantification of ADAs, with bridging 
ELISA as the most common alternative [38,39]. The method was used 
for the detection of ADAs of infliximab, with the possibility to assign an 
immune response to a mAb concentration below 0.1 μg mL− 1 [36]. 
ELISA experiments often need to be developed in house for the detection 
of ADAs. Bridging ELISA experimental design allows to address analyt
ical biases originating from the expression of various ADAs isotypes 
depending on treated individuals or species of origin [40]. Although, it is 
difficult to correctly quantify IgG4 isotypes as they are considered 
monovalent due to their Fab arm exchange process [41,42]. Another 
challenge may be the presence of the mAbs drug in the sample as it can 
cause an underestimate of the ADA due to drug-ADA complex formation. 
The drug interferences can be minimized by acidic dissociation. For 
example, Du et al developed a two-steps acid dissociation/bridging 
ELISA method for the detection of ADAs directed against anti-LAG3 
mAbs [43]. Also, acidic dissociation could be used in order to achieve 
the ELISA detection of ADAs targeting cabiralizumab in the presence of 
200 μg mL− 1 of the mAbs [44]. Those experiments showed the possi
bility to identify the presence of ADAs even for samples containing high 
concentration of the drug with improved sensitivity and robustness [45]. 
Recent instrumental developments concerning ELISA for mAbs and 
ADAs quantification have focused on improving analytical perfor
mances, especially for use as point-of-care analysis. Iria et al have 
developed a microfluidic biosensor-based on ELISA (mELISA) designed 
to quantify infliximab in the plasma of treated patients (Fig. 3A). The 
mELISA required only 24 min to obtain the accurate and robust quan
tification of infliximab (Fig. 3BC), representing a drastic reduction of 
analysis time compared to conventional ELISA [46].

ELISA rapidly took the role of TDM reference technique for the 
quantification of mAbs and ADAs in biological samples, particularly due 
to the absence of sample preparation, the specificity of the incorporated 
ligand and the sensitivity of fluorescence detection. However, in some 
cases, its specificity may be compromised due to unspecific interactions 
between the ligand and the sample content, involving quantification 
biases to false positive in rare instances. Also, ELISA results showed 
significant variability indicating a need for standardization. Truffot et al 
compared two commercially available ELISA kits and liquid chroma
tography coupled to mass spectrometry (LC-MS) analysis for the 

Fig. 2. Schematic representation of the two types of ADA synthesized by the immune response from immunogenicity.
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quantification of rituximab and eculizumab. Results showed a negligible 
bias for ELISA quantification of rituximab, however the method 
demonstrated a significant bias of 69 % in the case of eculizumab [47]. 
Similarly, several publications described a systematic underestimation 
of mAbs concentration using ELISA [48].

Due to the specific nature of the ligand implemented for the capture 
of the mAb, ELISA experimental settings cannot be directly transposed to 
the quantification of several types of mAbs. Complete method devel
opment is necessary when developing a new ELISA assay. As a conse
quence, currently ELISA cannot provide the quantification of mAbs and 
the corresponding ADAs using a single experiment. Instead, samples 
need to be submitted to two different ELISA in order to obtain infor
mation regarding the mAbs and the ADAs respectively. Finally, ELISA 
cannot provide any information regarding the structure of the mAbs 
and/or ADAs. This characteristic may be particularly limiting especially 
to investigate the evolution of mAbs post-administration.

2.2. Radioimmunoassay

Radioimmunoassay (RIA) is a binding assay with the characteristic of 

using labeled biomolecules with gamma-ray emitting isotopes for the 
detection of the analyte [49]. For instance, the determination of ADAs in 
a biological sample can be done by adding radiolabeled F(ab)2 frag
ments of the mAb they are targeting. The non-bound F(ab)2 fragments 
are then washed and the radioactive signal of the complexes formed is 
measured as shown in Fig. 4 [50]. In other cases, the radiolabeled 
molecule that did not bound can also be measured and give a quanti
tative information on the complexes formed [51]. During the develop
ment of RIA assays, some characteristics of the radioligand (stability, 
lifetime) are important to study due to their influence on the experi
ment. Barta et al did an in vitro study on concentration, labelling effi
ciency and stability for 131I-cetuximab using time-resolved RIA. They 
demonstrated the fast and efficient radioiodination of cetuximab using 
an incubation of 1 min, and the labelling showed to be stable up to 96h 
providing sufficient time to perform experiments [52]. They encourage 
the characterization of stability and the binding affinities of the labeled 
mAbs with real-time method before further use in RIA. 125I and 131I 
isotopes are relevant as radiolabeling agents because they combine high 
natural isotopic abundances and provide relevant sensitivity [53].

RIA could be successfully used for the quantification of edrecolomab 

Fig. 3. Schematic representation of A) instrumental setup used for the mELISA, where cross-section diagram of the microchannel are illustrated, B) standard 
calibration curves of IFX in mELISA and C) representative signal intensity for IFX calibration curves in phosphate buffered saline (PBS) in mELISA. Adapted 
from Ref. [46].

Fig. 4. Schematic representation of the radioimmunoassay strategy commonly used for the quantification of ADA in human serum.
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from serum samples originating from patients treated for pancreatic 
cancer [54]. More recently, the implementation of RIA was described for 
the quantification of infliximab in serum [51]. Also, RIA could be suc
cessfully used to detect ADAs corresponding to adalimumab for rheu
matoid arthritis samples from patients. Note, that the measurement of 
ADA and adalimumab levels proved to be an early predictor of the 
therapeutic response to the treatment [50].

Due to its experimental design, RIA allowed to reduce quantification 
biases compared to ELISA by limiting the impact of residual non-specific 
interaction. In addition, radioactive detection enables to achieve lower 
LOD whereas maintaining excellent specificity which is relevant for the 
analysis of mAbs and ADAs in biological samples [38]. Thus, for the 
detection of ADA, RIA sensitivity was also due an improved drug 
tolerance of the assay, associated with the co-presence of adalimumab 
[55]. However, safe handling of radioactive materials and the need for 
expensive equipment [56] represents important constraints that 
complexify its implementation compared to ELISA [52,55]. Still, the 
development of RIA allowed from a conceptual point of view, to pave the 
way in order to further improve the specificity and sensitivity of binding 
assays for the detection and quantification of mAbs and ADA.

2.3. Chemiluminescent immunoassay

Chemiluminescence (CL) is based on the detection of photons pro
duced from a chemical reaction. This effect is used in chemiluminescent 
enzyme immunoassay (CLIA), where the species used for detection can 
generate light emission. For the analysis of mAbs and ADA, CLIA often 
relies on an antibody labeled with an enzyme. Typically, horseradish 
peroxidase (HRP) or alkaline phosphatase (ALP) is used with lumines
cent substrate like luminol for HRP or 1,2-dioxo-cyclohexane derivatives 
for APL [57]. The CL generated from HRP or APL reaction are usually 
not intense, thus various developments were realised to intensify the 
signal [58,59]. Darwish et al have developed an ultrasensitive CLIA for 
the quantification of durvalumab using HRP-luminol and hydrogen 
peroxide reaction in presence of 4-(1,2,4-triazol-1-yl)phenol [60]. Using 
a similar approach, they used 4-(1-imidazolyl)phenol as a CL enhancer 
for the CLIA quantification of atezolizumab achieving high sensitivity 
and compatible with high throughput analysis [61].

Enzymes used to perform CLIA can also create variabilities in term of 
reproducibility, significant background signal and potential inhibition 
of the interaction between antigen and antibody [62]. Another type of 
chemiluminescent reaction for mAbs quantification uses acridinium 
ester (AE) labeled antibodies, to remove the use of enzymes [63]. These 
characteristics have led to the commercialization of AE labeling kits, 
that were used for the analysis of infliximab, adalimumab and the cor
responding ADAs [64]. Consequently, the AE-label CL method could be 
further integrated in an easy automated system for high-throughput 
analysis [65]. Compared to conventional ELISA and RIA methods, 
CLIA has recently attracted much interest due to its better sensitivity, 
wider dynamic range and low background [61,63]. In clinical practice, 
CLIA has gained attention due to its rapid analysis and the increase of 
standardization practice enabled by the automated process. Another 
major advantage has also been the possibility to analyse in biological 
samples multiple drugs or a mAb and its ADA in a single analysis [65].

3. Molecular interaction analysis

3.1. Flow cytometry

Flow cytometry (FC) is a real-time analysis technique based on the 
measurement of light scattering events and fluorescence emission of 
cells or particles in solution passing in front of a focused laser. FC pro
vides quantitative and qualitative analysis of mAbs. FC quantification of 
mAbs could be achieved for rituximab, providing accurate and sensitive 
quantification for the concentration range 5–250 μg mL− 1 [66]. 
Furthermore, FC could also be used to determine the affinity between 

adalimumab and its corresponding antigen TNF-α [67]. Affinity mea
surements using FC could be applied to compare different mAbs bio
similars, emphasizing potential differences in potency and functional 
differences [68]. Similarly, FC can be used to characterize the interac
tion of mAbs with effector function receptors, which can contribute to 
the optimization of mAbs design [69]. Also, recent advances further 
improved the ability of FC to evaluate nonspecific binding interactions 
between mAbs and non-antigen biomolecules in order to assess mAb 
polyspecificity [70].

FC could also be used to investigate mAbs immunogenicity in the 
form of ADAs expression. Thus, a FC method was developed for the 
simultaneous quantification of adalimumab and the corresponding 
ADAs in plasma samples. Using polystyrene beads functionalized with 
either TNF-α or adalimumab F(ab’)2, robust quantification could be 
demonstrated between 79-600 and 1–150 ng mL− 1 for adalimumab and 
ADAs respectively [71]. Thereby, FC could potentially provide improved 
sensitivity for the quantification of mAbs or ADAs compared to con
ventional bridging ELISA, with reduced interferences from the matrix. 
Nevertheless, FC applications remain limited due to the complexity of 
the method development, which in addition requires detailed assess
ment in order to ensure absence of biases and cannot be transposed to 
different mAbs and/or ADAs.

3.2. Surface plasmon resonance

Surface Plasmon Resonance (SPR) is an analytical technique used to 
monitor molecular interactions in real time [72]. Thus, the monitoring 
of binding provided by SPR enables the experimental measurement of 
kinetic constants, especially the association rate (kon, ka) and the 
dissociation rate (koff, kd) corresponding to the interaction. Also, SPR 
sensorgrams allow to determine equilibrium dissociation constants (KD) 
that define affinity. As a consequence, SPR has gradually become an 
essential tool for the characterization of protein-protein interactions.

SPR could be successfully used for the characterization of a mAb- 
antigen interaction. Wang et al developed a SPR method to determine 
the kinetic and affinity characteristics for the interaction between CD20 
receptor and respectively rituximab or obinutuzumab Fab. Thus, they 
demonstrated different CD-20 affinities of the two proteins with KD 
measurements of 0.2 and 62 nM respectively [73]. Similarly, SPR could 
be implemented to measure the affinity between pembrolizumab and 
the targeted PD-1 receptor [74]. SPR provides crucial information 
regarding the affinity for the targeted antigen which showed to be 
suitable for the biosimilarity assessment in the case of biosimilar mAbs 
having distinct glycosylations profiles [75].

SPR could also be implemented for the detection and analysis of 
mAbs-ADAs interactions. For example, Real-Fernàndez et al developed a 
strategy to determine the affinity of anti-adalimumab antibodies present 
in the sera of treated patients using immobilized adalimumab [76]. Also, 
SPR could be used to measure the affinity of ADAs expressed in rats 
exposed to rituximab. The study also highlighted that ADAs expressed 
from different individuals exhibited variable affinities illustrating dif
ferences of immune response [77]. Similarly to binding assays, the 
presence of important quantities of mAbs in the sample may generate 
drug interferences when performing SPR analysis. Weeraratne et al 
showed the benefits of using a secondary confirmatory detector anti
body to improve drug tolerance and signal sensitivity of the method. 
Results obtained for the fusion protein trebananib demonstrated a more 
accurate assessment of ADA pharmacokinetic with trebanabib than CLIA 
[78].

Various developments were recently reported to enrich the applica
bility of SPR. Beeg et al developed a novel SPR instrumental technology 
to enable the simultaneous quantification of a mAb and ADAs in a single 
analysis. On a single sensor surface, several flow channels were used to 
immobilize different types of ligands on parallel stripes, and samples 
were introduced in parallel over all the immobilized ligands (Fig. 5A). 
Therefore, multiple ligands and solutions could be measured in a single 
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analysis (Fig. 5B) [79]. Consequently, they identified significantly 
higher concentration of ADAs and less false negative when performing 
quantification using SPR compared to commercial ELISA assay. These 
differences were attributed to long incubation times during ELISA 
experiment and the presence of low affinity ADAs in sample originating 
from patients as opposed to high affinity IgGs used for ELISA calibration 
[80]. To prevent similar phenomenon in SPR, a calibration-free SPR 
method was also developed for the quantification of ADAs in serum 
samples [81].

SPR has revealed to be a particularly powerful technique for the 
characterization of protein-protein interaction, capable to provide 
detailed characterization of such subtle phenomenon. Also, the instru
mental versatility of SPR progressed significantly with the possibility to 
immobilize different types of partners. Such characteristics are inter
esting for mAbs and ADAs that interact with multiple antigens and re
ceptors. SPR analysis is not impacted by eventual matrix effects and the 
method does not involve sample labeling or pretreatment. Moreover, 
due to the low sample preparation required and real time monitoring of 
interactions, this method has proven to be capable of detecting ADAs 
with lower affinities compared to ELISA for serum samples originating 
from patients treated using panitumumab [82]. The possibility of using 
SPR to measure precisely the affinity between a mAb and the corre
sponding ADA could be successfully correlated to the therapy outcome 
of patients [83]. As a consequence, SPR can provide information criti
cally important for TDM, enabling an earlier discovery of ADA in order 
to provide more patient-specific therapeutic decisions.

3.3. Mass photometry

Mass photometry (MP) is an analytical technique recently intro
duced, capable to measure the mass of single biomolecules and com
plexes in solution. MP is based on an optical microscope system modified 
to measure the interference between light scattered by the solubilized 
analyte and light reflected from the surface. The analyte binds non- 
specifically to the cover glass surface of the microscope, resulting in a 
change in the refractive index at the interface between glass and water 
(Fig. 6A). The visual signal undergoes image processing (Fig. 6B) to 
obtain a measure of the interferometric contrast (Fig. 6C), which can be 
correlated to the molecular weight of the analytes (Fig. 6D). MP enables 

to estimate with a 2 % accuracy the molecular mass of compounds 
presents at nanomolar concentrations using only 10 μL of sample. Also, 
it does not require sample preparation and therefore represents a high- 
throughput technique as analysis time is commonly about 5–30 s per 
sample [84]. MP could be used to analyse a variety of biomolecules such 
as viral vectors [85], nucleic acid [86] and membrane proteins [87].

MP characteristics are particularly interesting for the study of anti
bodies because it allows direct observation of antibody binding events. 
Thus, MP could be successfully used to characterize the formation of 
complexes associating an anti-thrombin mAb to its target antigen or 
FCGR3A receptor respectively. Data allowed to determine unambigu
ously their different stoichiometries. Moreover, KD dissociation con
stants could be calculated from measurement of free and bound analytes 
[88]. Another study highlighted differences of the koff and kon kinetic 
constants for the formation of complexes between glycosylated and 
deglycosylated trastuzumab with the FcγRIa receptor [89]. When 
compared to size exclusion chromatography-native MS and charge 
detection-MS for the analysis of protein-protein interactions, MP 
demonstrated the ability to overcome some limitations of native MS 
regarding the measurements of highly heterogeneous antibody-antigen 
co-occurring complexes [90]. Thus, MP could be implemented 
concomitantly with charge detection-MS for the characterization of the 
complex formed between SARS-CoV-2 proteins and IgGs. The study gave 
further information on the binding behaviour of IgGs towards the 
SARS-CoV-2 and the kinetics of the different stoichiometry complexes 
that are formed [91].

MP was also used to characterize the interaction between mAbs and 
ADAs. Reinert et al used MP to characterize the interaction between 
infliximab and a corresponding ADA. MP data allowed to precisely 
determine the stoichiometries of the resulting complexes and demon
strated the specificity of infliximab-ADAs interaction (Fig. 7A). Finally, 
study of the infliximab-ADAs complexes formation according to the 
molar equivalent of the two species could be achieved (Fig. 7B) [92]. 
Regardless of its recent introduction, MP represents a quite promising 
technique for the characterization of mAbs and ADAs.

The study of biomolecular interactions between a mAb and its target 
is important, for example to determine their stoichiometries and their 
affinities. By following the formation of complexes in solution, MP 
provides highly accurate information on the binding affinity, 

Fig. 5. A) General scheme of the SPR-based assay for simultaneous determination of infliximab (IFX) and antibodies directed against IFX (ATI) concentrations in 
serum. The SPR apparatus has six flow channels which can immobilize up to six ligands on parallel strips of the same sensor surface. B) Representative sensorgrams 
obtained injecting simultaneously six solutions of IFX-spiked sera over immobilized TNFα, or six solutions of ATI-spiked sera over immobilized IFX. Adapted 
from Ref. [79].
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heterogeneity and dynamics of protein-protein interactions involving 
therapeutic mAbs. The light-scattering method is a reliable technique for 
the in-solution analysis of protein complexes and can fill the gaps of 
others characterization techniques. In particular, the possibility to 
characterize interactions in-solution maintains in vivo dynamics 
compared to other techniques like X-ray crystallography and cryogenic 
electron microscopy, implying static analytes for the analysis. Still, some 
limitations of MP have also been highlighted such as the low mass 
resolving power. Moreover, MP has not been yet used for the analysis of 
protein complexation in biological matrices. Nevertheless, further 
technological and methodological improvements concerning MP should 
be expected in the near future in order to place it as an essential tool to 
understand mAbs complex interactions.

4. Mass spectrometry based analysis

4.1. Sample preparation

The analysis of therapeutic mAbs in biological samples also in
tegrates an additional complexity. Indeed, it represents the analysis of a 
therapeutic IgG, present at nanomolar range concentration, in an 
extremely complex matrix containing up to 120 μM of natural IgGs in the 
case of serum, and several thousands of different molecules and bio
molecules [93]. Therefore, sample preparation becomes a pivotal 
element in order to achieve a robust detection and accurate quantifi
cation of mAbs and ADA. Sample preparation should take into account 
the complexity of the biological sample, and the characteristics of the 
subsequent analysis regarding injection volume and mass analyzer 
instrumental sensitivity for instance. Usually, an initial step is incorpo
rated to reduce the sample complexity using depletion or isolate ther
apeutic mAbs from the matrix (Fig. 8).

Sample depletion represents the removal of highly abundant proteins 

Fig. 6. Principle of single-molecule counting by mass photometry. A) Label-free single-molecule detection by imaging the interference of scattered and reflected light 
arising from individual landing events at a glass-water interface over time. B) Differential interferometric scattering image of the binding events. C) Representative 
images of molecules with different masses (larger molecules have more intense contrasts). D) Scatter plot of single-molecule contrasts and resulting mass distribution 
(indicative mass values). Adapted from Ref. [84].
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composing the sample. Different protocols are available to perform al
bumin removal of biological samples, they often rely on albumin 
immune-affinity using short column formats [94,95]. Protein precipi
tation can also be used to reduce the complexity of the sample. Indeed, it 
represents a cost-effective way to remove a large variety of small organic 
compounds and other contaminants potentially present in serum or 
plasma. Addition of organic solvent causes a brutal reduction of the 
dielectric constant of the sample, disrupting the hydrophobic in
teractions of proteins leading to their precipitation [96]. Nguyen et al 
used only organic solvent protein precipitation for sample preparation in 
order to perform the absolute quantification of rendomab-B1 in serum 
and plasma samples compatible with pharmacokinetic studies [97]. 
Protein precipitation is particularly simple to perform but often does not 
provide specificity. Therefore, various developments were made in order 
to induce partial specificity toward the precipitation of mAbs, in 
particular using different types of anionic polyelectrolytes [98]. The 

implementation of polyanetholesulfonic acid as a precipitation agent 
allowed to achieve highly effective extraction in model biological 
matrices [99]. More recently, Schäfer et al described the use of ammo
nium sulphate for the precipitation of different types of mAbs. They 
could be consequently quantified using a bottom-up approach by 
analytical format LC-MS/MS using a triple quadrupole instrumentation 
[100].

Sample preparation can also be designed to perform the extraction of 
therapeutic mAbs from biological matrices, usually with minimized 
steps while providing medium to high specificity. Immunoaffinity pu
rification (IP) is particularly adapted for the isolation of therapeutic 
mAbs from biological samples. To perform IP, ligands interacting with 
the protein of interest are immobilized on a static solid media. Different 
reactions can be implemented to allow the immobilization of ligands on 
the surface of adequately prepared media like porous resins, agarose or 
ferromagnetic beads [101]. Different proteins, interacting with the Fc 

Fig. 7. A) MP analysis of the complex formation of infliximab (IFX) and ADA in PBS. B) Evolution of species relative proportion for different IFX:ADA molar 
equivalents using MP in PBS. Red dots: Free mAbs (signal at 145 kDa), green dots: 1:1 stoichiometry (signal at 290 kDa), blue dots: 1:2 or 2:1 stoichiometry (signal at 
433 kDa) and black dots: 2:2 stoichiometry (signal at 577 kDa). Adapted from Ref. [92].

Fig. 8. Overview diagram of the benefits and drawbacks of the mass spectrometry strategy for mAb and ADA analysis.
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region are commonly used to perform the extraction of IgGs from bio
logical samples. Protein A immobilized on sepharose resin was used to 
perform IP of trastuzumab and bevacizumab from human plasma fol
lowed by nanoflow LC-MS/MS for their bottom-up quantitative analysis 
[102]. Similarly, protein G immobilized on ferromagnetic beads was 
used for the IP extraction of different therapeutic mAbs from serum 
samples followed by LC-MS/MS analysis using a quantitative bottom-up 
strategy [103,104]. Protein A and protein G represent versatile partners 
for the IP of different types of therapeutic mAbs [105]. They provide 
efficient purification from abundant proteins. However, after purifica
tion, samples will still contain a large number of natural IgGs 
co-extracted from the matrix. Their presence at high concentrations 
could potentially result in the saturation of the IP media, preventing the 
optimal extraction of the mAbs of interest, and generate interferences 
during MS analysis.

To address limitations of protein A/G IP-based extraction, ligands 
specifically interacting with the therapeutic mAb of interest can be 
incorporated to the surface of the IP media. Purified antigens are used 
which allows to drastically improve extraction specificity and prevents 
unforeseen saturation of the extraction media. Moreover, it reduces the 
probability of MS signal interferences originating from other proteins. 
Jourdil et al reported the immobilization of ligands in pipet tips for IP 
extraction step to immobilize TNF-α in order to obtain the purification of 
infliximab from plasma [106]. Similarly, streptavidin-coated 96 wells 
plates was used to immobilize biotinylated TNF-α for the IP extraction of 
infliximab followed by LC-MS/MS absolute quantification [107]. Also, 
Reinert et al described the immobilization of TNF-α on the surface of 
streptavidin-coated magnetic beads to perform the extraction of inflix
imab and adalimumab in human serum. They demonstrated infliximab 
extraction yield systematically superior to 95 % using indirect ELISA 
quantification [108]. The usage of immobilized antigen IP delivered 
outstanding recovery yields even for complex biological samples. The 
implementation of antigen-based IP has permitted the quantification of 
mAbs in biological samples using analytical format instrumentation 
readily available and MS instrumentation incorporating different types 
of mass analyzers [100]. Other ligands were recently explored for the 
specific IP extraction of mAbs in biological samples. Thus, Sun et al 
developed the implementation of aptamers immobilized on streptavidin 
agarose beads for the purification of trastuzumab from serum samples 
[109].

The characterization and quantification of mAbs using MS is 
conventionally performed by the intermediate of peptide-centric anal
ysis. As a consequence, proteolytic digestion is realised consequently to 
sample purification detailed previously. Similarly to quantitative pro
teomics analysis, trypsin remains the preferred enzyme to perform the 
digestion [110]. Indeed, trypsin exhibits a good activity capable to 
achieve high digestion yield after a few hours of incubation. In addition, 
generating peptides systematically having C-terminal basic residues is 
favourable to protonation during the ESI ionization process which 
guarantees optimal MS signal sensitivity [111].

4.2. Liquid chromatography

Liquid chromatography hyphenated to mass spectrometry (LC-MS) 
demonstrated to be particularly adapted for sensitive, highly specific 
and robust analysis of biomolecules in complex matrices. Concerning 
mAbs analysis in biological samples, peptide centric quantification 
derived from bottom-up proteomic strategy is commonly used. Peptides 
obtained from proteolytic digestion can be conveniently separated using 
standard reverse phase columns to achieve their sequential elution to MS 
instrumentation (Fig. 8). To ensure optimal specificity, quantification 
peptides are selected based on their amino acid sequence singularity 
screened on databases, and absence of potential PTMs [112]. Therefore, 
selected peptides are commonly located in the Fab domain of mAbs 
[113]. LC-MS/MS analysis of peptide mixtures can be performed using 
multiple reaction monitoring (MRM) or selected reaction monitoring 

(SRM). In part due to the extensive sample preparation required, a 
stable-isotope labeled (SIL) mAb is used as an internal standard.

Quantification using LC-MS/MS analysis was developed for different 
types of mAbs present in various biological matrices including plasma 
[103], serum [114], tissue [115], cerebrospinal [116] and nasal lining 
fluid [117]. Ligand binding assays (LBA) like ELISA are typically 
dependent of specific anti-idiotype reagents that may not be always 
available for newer mAbs. Therefore, another advantage offered by 
LC-MS/MS analysis is the possibility to develop the quantification for a 
variety of mAbs using minimal method adaptation. For instance, El 
Amrani et al described a conventional methodology for the development 
of LC-MS/MS quantification of mAbs [118]. Thus, LC-MS/MS quantifi
cation could be achieved for eleven different mAbs using the same 
sample preparation [115]. The versatility provided by MS analysis is 
also a major benefit for the quantification of mAbs using concomitantly 
in a treatment. For example, trastuzumab and pertuzumab used in 
bi-therapies could be quantified in serum sample in a single analysis 
using LC-MS/MS [119]. Also, infliximab and adalimumab are both tar
geting TNF-α, therefore a common LC-MS/MS method could be devel
oped for the quantification of the two mAbs in plasma samples. The 
method could be used without prior information regarding the type of 
mAb product present in the sample [120]. Quantification of infliximab 
and adalimumab in serum sample from Crohn’s disease patients allowed 
to identify a cut-off concentration potentially associated with remission 
[121,122]. Using a similar approach, absolute quantification of mAbs 
REGN10933 and REGN10987 used for the treatment of SARS-CoV-2 
could be demonstrated in serum samples using LC-MS/MS [114]. 
LC-MS/MS analysis could be implemented for the simultaneous quan
tification of seven different mAbs used in the treatment of cancer in 
plasma sample. Results showed similar performance for the different 
mAbs quantification compared to ELISA reference methods [123]. 
Thereby, LC-MS/MS methodologies were recently reported to be able to 
achieve performances a minimum on par with ELISA concerning accu
racy and sensitivity [124]. However, MS/MS data have provided addi
tional specificity. Almost thirty different mAbs were successfully 
quantified using LC-MS/MS in biological matrices (Table 1), sometimes 
preceding the availability of the anti-idiotype of the mAb necessary for 
LBA development [117]. LBA like ELISA present some limitations due to 
occasional interferences originating from the biological matrices or with 
ADA interfering with the quantification causing epitope binding 
[125–127].

On contrary, LC-MS/MS quantification was not subjected to signifi
cant matrix effects or the presence of ADAs, however the incorporation 
of an internal standard is mandatory to obtain a suitable quantification 
[143]. LC-MS/MS analysis also showed reliable quantification of IgG4, 
that can be problematic due to the occurrence of Fab arm exchanges. 
Indeed, because the quantification is strictly based on specific peptides, 
their quantity remains equivalent even in case of arm exchanges [116]. 
In contrast, LBA can be significantly impacted by IgG4 Fab arm exchange 
leading to important quantification biases [144]. MS based quantifica
tion of mAbs is linked to the availability of a protein specific peptide 
consequently to proteolytic digestion. However, ionization efficiency is 
dependent on the chemical nature of the analytes which significantly 
impacts signal intensity and sensitivity. Therefore, the performances of 
the LC-MS/MS may be affected depending on the type of mAbs, even 
though the inherent sensitivity of MS instrumentation provides relevant 
quantification for treated patients.

One of the trends regarding recent analytical developments for the 
quantification of mAbs using LC-MS(/MS) analysis is driven by using 
other methodologies as alternative to peptide centric experiments. Thus, 
a middle-up analysis could be developed for the quantification of rit
uximab using LC-MS analysis [132]. Using a middle-up approach, the 
μLC-MS quantification of eculizumab could also be developed demon
strating similar performances [134]. The quantification of adalimumab 
was also developed using 2D-LC-MS analysis. Heavy chains and light 
chains separation was achieved by cation exchange followed by reverse 
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Table 1 
Mass spectrometry quantification strategy depending on the mAb or ADA quantified and the matrix.

Mab or ADA quantified Sample volume 
of matrix

Purification method Internal 
standard

Quantification 
method

LOQ/LLOQ Reference

IFX 125 μL (human 
serum)

antibody precipitation (ammonium 
sulphate)

Horse IgG/ 
SIL-peptides

2 peptides (SRM) 1.0 μg mL− 1 [128]

5 μL (human 
serum or 
plasma)

filter plate SIL-peptides 2 peptides (MRM) 0.72 μg mL− 1 [124]

2–100 μL 
(human serum)

immunoaffinity (TNF-α coated 
plate or beads)

SIL-IFX 1 peptide (SRM or 
MS signal)

0.5 μg mL− 1 

0.22 μg mL
[107,
129]

Natalizumab Human serum 
and CSF

– Murine Ig 3 peptides (MRM) 1 μg mL− 1 [116]

ADM 10 μL (human 
plasma)

non-antibody serum proteins 
binding support

SIL-ADM Light chain (MS 
signal)

1 μg mL− 1 [130]

Toripalimab 35 μL (human 
plasma)

protein precipitation 
(centrifugation)

SIL-peptide 1 peptide (MRM) 5.03 μg mL− 1 [131]

RTX 20 μL (human 
serum)

non-antibody serum protein 
binding support

VDZ Light chain (MS 
signal)

9.7 μg mL− 1 [132]

CTX 50 μL (human 
plasma)

protein precipitation (methanol) SIL-peptides 2 peptides (SRM) 1 μg mL− 1 [133]

TZM 50 μL (human 
serum)

protein precipitation (methanol) – 1 peptide (MRM) 0.05 fmol μL− 1 [113]

TZM 100 μL (human 
serum)

immunoaffinity (aptamer coated 
beads)

SIL-peptide 1 peptide (MRM) 0.5 μg mL− 1 [109]

ECZ 50 μL (human 
serum)

immunoaffinity (spin Column IgG4 
affinity)

PBZ Light chain (MS 
signal)

5 μg mL− 1 [134]

USM 35 μL (human 
serum)

cation exchange plate Murine IgG 1 peptide (MRM) 0.4 μg mL− 1 [135]

BVZ 2,25 μL (human 
plasma)

size Exclusion Spin Column SIL-peptide 1 peptide (MRM) 1.8 μg mL− 1 [112]

DNX 10 μL (human 
plasma)

antibody precipitation (ammonium 
sulphate)

SIL-peptide 1 peptide (MRM) 1 μg mL− 1 [136]

Canakimumab 20 μL (human 
plasma)

immunoaffinity (protein G coated 
plate)

CTX or RTX 1 peptide (MRM) 0.1 μg mL− 1 [111]

HDIT101 antibody 25 μL (human 
plasma)

immunoaffinity (protein A resin) SIL-peptide 1 peptide (MRM) 20 μg mL− 1 [110]

TZM or BVZ 10 μL TZM 
5 μL BVZ

immunoaffinity (protein G coated 
beads)

TCZ 1 peptide (MRM) 2,5 μg mL− 1 TZM 
10 μg mL− 1 BVZ

[104,
137]

TXG and CGV 20 μL (human 
serum or swab 
for NLF)

immunoaffinity (protein A/G 
coated beads)

SIL-peptides 1 peptide/mAb 
(MRM)

0.3 μg mL− 1 (serum) 
5 ng mL− 1 (NLF)

[117]

REGN10933 and 
REGN10987

5 μL (human 
serum)

– SIL-peptides 1 peptide/mAb 
(SRM)

20 μg mL− 1 REGN10933 
10 μg mL− 1 REGN10987

[114]

ADM and IFX <50 μL (human 
plasma)

immunoaffinity (TNF-α coated tips 
or plate)

SIL-IFX and 
SIL-ADM

1 peptide/mAb 
(MRM or SRM)

1 μg mL− 1 [120,
138]

TZM and PTZ 5–10 μL (human 
serum)

immunoaffinity (protein A coated 
beads or resin)

SIL-mAb or 
SIL-peptide

1 peptide/mAb 
(MRM)

0.25 μg mL− 1 TZM 
0.3 μg mL− 1 PTZ

[119,
139]

RTX and ECZ 20 μL (human 
plasma)

immunoaffinity (protein G coated 
plate)

SIL-ADM 1 peptide/mAb 
(MRM)

1 μg mL− 1 RTX 
5 μg mL− 1 ECZ

[47]

BVZ, TZM, TCZ and NVM DBS (human 
blood)

immunoaffinity (protein G coated 
beads)

PBZ 1 peptide/mAb 
(MRM)

5 μg mL− 1 BVZ - 10 μg mL− 1 TZM - 
13 μg mL− 1 TCZ - 8 μg mL− 1 NVM 
(LOQ)

[103]

IFX, RTX, CTX, DPL, DNX, 
VDZ and EMZ

10 μL (human 
serum or 
plasma)

antibody precipitation (ammonium 
sulphate)

SIL-peptides 1 peptide/mAb 
(SRM)

1 μg mL− 1 IFX DNX VDZ 
2 μg mL− 1 CTX DPL 
4 μg mL− 1 RTX EMZ

[118]

BVZ, CTX, PBZ, RTX, TZM, 
IPLC and NVM

20 μL (human 
plasma)

immunoaffinity (affinity resin to 
IgG)

SIL of each 
mAb

1 peptide/mAb 
(MRM)

2 μg mL− 1 [123]

ADM, CTX, IFX, RTX, 
TZM, SCK and TCZ

20 μL (human 
plasma)

immunoaffinity (protein G resin) SIL-ADM 1 peptide/mAb 
(MRM)

1 μg mL− 1 RTX 
5 μg mL− 1 ADM CTX IFX TZM TCZ 
SCK

[122]

IFX, CTX, RTX, PTZ, ECZ, 
BVZ, DVL, NVM, VDZ, 
OCZ, USM

50 μL (human 
serum)

protein precipitation (caprylic acid) SIL-peptides 1 peptide/mAb 
(MRM)

12.8 μg mL− 1 PBZ - 20 μg mL− 1 ECZ - 
4 μg mL− 1 IFX CTX RTX BVZ NVM 
VDZ OCZ USM DVL(LLOQs)

[115]

NADA against IFX 5 μL (human 
plasma)

immunoaffinity (TNF-α coated 
plate)

SIL-ADM 1 peptide (SRM) 3–96 μg mL− 1 [140]

ADA (IgG1-4, IgM, IgE, 
IgA1, IgA2)

95 μL (human 
plasma)

immunoaffinity (protein Z beads/ 
mouse mAb directed against human 
IgG coated beads)

SIL-peptides 1 peptide/isotype 
(MRM)

0.5 μg mL− 1 IgG1 - 0.25 μg mL− 1 

IgM - 0.1 μg mL− 1 IgE IgG4 IGA1 
IgA2

[141]

ADA against IFX 5 μL (human 
plasma)

immunoaffinity (protein A coated 
beads)

SIL-IFX F 
(ab’)2

1 peptide (SRM) 0.1 μg mL− 1 [142]

Abbreviations: ADM: Adalimumab; BVZ: Bevacizumab; CGV: Cilgavimab; CSF: Cerebrospinal fluid; CTX: Cetuximab; DBS: Dried blood spot; DNX: Dinutuximab; DVL: 
Durvalumab; DPL: Dupilumab; ECZ: Eculizumab; EMZ: Emicizumab; IFX: Infliximab; IPL: Ipilimumab; NLF: Nasal Lining Fluid; NVM: Nivolumab; OCZ: Ocrelizumab; 
PBZ: Pembrolizumab; PTZ: Pertuzumab; RTX: Rituximab; SCK: secukinumab; TCZ: Tocilizumab; TXG: Tixagevimab; TZM: Trastuzumab; USM: Ustekinumab; VDZ: 
Vedolizumab.
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phase chromatography [130]. The second dimension of separation was 
needed only to place the heavy and light chains in solvent conditions 
compatible with ESI ionization. In most cases only the signal corre
sponding to the light chain could be considered due to the inherent 
heterogeneity of heavy chains from N-glycosylations. The identification 
was usually based on MS measurements, therefore it required high 
resolution MS analysis in order to prevent signal misinterpretation and 
false positive. To further improve the confidence of the identification, 
middle-down analysis can be performed. Collision induced dissociation 
(CID) routinely used for peptide fragmentation cannot deliver sufficient 
energies to enable free chains fragmentation. Therefore 
electron-transfer dissociation (ETD) providing higher energies must be 
incorporated. For instance, adalimumab extracted using affinity purifi
cation was submitted to limited proteolysis to generate large fragments 
consequently analysed by nanoflow LC-MS/MS using CID/ETD frag
mentation on a FT-ICR instrument. Results showed confident identifi
cations by means of systematic sub-1 ppm mass accuracies and MS/MS 
sequence coverage up to 81 %. Still, sensitivity remained limited to 
important concentration ranging from 29 to 2436 μg mL− 1 [145]. 
Limited sensitivities observed for the analysis of large fragments is 
explained by a lower ionization efficiency in the case of larger macro
molecules, and the occurrence of ion suppression effect originating from 
the sample content.

The quantification of mAbs was also explored by the intermediate of 
intact proteins analysis using top-down strategy, in order to remove 
time-consuming proteolysis and limit endogenous PTMs [146]. How
ever, at the moment lower sensitivities observed for intact proteins are 
still preventing the application of top-down MS analysis for the quan
tification of mAbs in biological samples. Nevertheless, significant im
provements concerning sample preparation and MS instrumentation 
should be expected in the future to envisage top-down MS quantification 
in clinical applications. Especially, methodology compatible with native 
MS should be developed in order to further characterize mAbs in con
ditions close to its in vivo state. Because the problematic regarding 
biological sample complexity will still be present, it appears essential to 
develop sample purification enabling to maintain purified mAbs in their 
native conditions. Addressing this analytical challenge will provide the 
possibility to explore further the evolution of therapeutic mAbs after 
their administration for example.

Concerning ADAs which represents a trending aspect of LC-MS(/MS) 
development for clinical analysis, dedicated methodologies were 
designed in order to enable ADAs quantification using MS based anal
ysis. Semi-quantitation of ADA was recently developed using affinity- 
based purification of ADAs followed by proteolytic digestion and LC- 
MS/MS analysis. ADAs quantification was achieved by the intermedi
ate of peptides from the IgG constant domain as they are naturally 
produced IgGs. This methodology was used for the quantification of 
ADAs in plasma, showing a minimal concentration of 0.5 μg mL− 1 [141]. 
The specificity of this type of analytical strategy may be limited. As a 
consequence, recent developments described indirect quantitation of 
ADA based on the immunocapture of IgGs in sera by adding mAb Fab 
fragment. The Fab fragments involved in interactions are quantified in 
order to deduce the concentration of ADAs in plasma samples [142]. 
Another study described the indirect quantification of ADAs based on 
the proportion of mAbs neutralized after addition of a fixed concentra
tion of infliximab. After equilibrium, the fraction of infliximab not 
forming complexes with ADAs, was extracted using immobilized TNF-α. 
Results showed the possibility to achieve a robust quantification of ADAs 
for concentration as low as 1 μg mL− 1 and ADA quantification in 
agreement with ELISA [140].

Contrary to LBA and molecular interaction analysis, MS analysis is 
able to provide structural information regarding mAbs. Thus, LC-MS/MS 
was extensively used for the characterization of major PTMs occurring 
on mAbs, either using bottom-up [147] or middle-up approaches [148] 
as part of in vitro stability studies. Furthermore, such feature was used to 
determine the level of a single Asn deamidation after administration of 

Anti-CRTh2 mAbs. LC-MS/MS analysis of the peptide mixture allowed to 
perform the relative quantification of deamidation considering the 
affected peptide over a period of 12 weeks [149]. Using a similar 
methodology, precise in vivo monitoring of three modifications affecting 
an asparagine located in the CDR domain in the case of trastuzumab 
could be performed. The specific modification of this residue charac
terized by LC-MS/MS could be correlated to a loss of trastuzumab 
recognition in ELISA assays, attributed to an altered affinity for the 
HER-2 antigen [150]. Lately, the LC-MS/MS analysis of trastuzumab in 
vivo led to the identification of amino acids prone to PTMs in regions 
crucial for mAbs binding, that could potentially impact its potency and 
affinity [151]. It is important to note that sample treatment commonly 
used for mAbs bottom-up analysis, may induce endogenous PTMs 
especially Asn deamidation. Hopefully, careful optimization of sample 
preparation can be realised in order to limit drastically undesired 
modifications of the protein. Moreover, the in vivo and in vitro compar
ison study clearly identified the occurrence of PTMs after administration 
of therapeutic mAbs [151]. Thus, the implementation of LC-MS/MS 
analysis is particularly interesting due to the possibility to perform 
highly specific and sensitive quantification. In addition, this technique 
can provide detailed characterization which could be used in the future 
to understand their impact on mAbs activity.

4.3. Capillary electrophoresis

Capillary electrophoresis (CE) enables a high-resolution separation 
of charged species in solution, particularly relevant for the analysis of 
proteins and peptides. Thus, various CE methods could be developed for 
the characterization of mAbs over the different levels defining their 
structure [152]. Due to a relevant combination of their characteristics, 
CE coupled to MS has emerged as a powerful technique for therapeutic 
mAbs products characterization [153]. Direct CE-MS hyphenation could 
also be used for the study of glycoforms and charge variants composing 
several therapeutic mAbs products [154]. CE-MS instrumentation is 
experiencing major technical improvements as well, like the develop
ment of 2D-CE-MS for the detailed identification of mAbs charge vari
ants in their intact form [155].

Simultaneous quantification and structural characterization of 
infliximab in serum samples using CE-MS/MS analysis could be suc
cessfully developed (Fig. 8). The analytical strategy, based on a bottom- 
up strategy, was composed of antigen-affinity purification and proteo
lytic digestion, followed by CZE-ESI-MS/MS analysis [129]. Compared 
to the corresponding ELISA assay, CE-MS/MS showed consistent quan
tification and significantly lower analytical biases (Fig. 9A). CE-MS/MS 
data allowed to simultaneously identify different types of PTMs 
including N-glycosylations, Asp deamidation and Asp isomerization. 
Also, a novel MS signal normalization was incorporated to data treat
ment in order to address any eventual endogenous PTMs generated 
during sample preparation. Results allowed to monitor the evolution of 
the glycan distribution after administration, enabling to identify fast 
clearance variants independently. Interestingly, the comparison of the 
concentration of active infliximab depending on the anteriority of the 
administration did not demonstrate any conclusive correlation (Fig. 9B). 
Whereas the residue Asn57, located in the CDR regions, exhibited 
gradual modification depending on time since administration poten
tially affecting its interaction with TNF-α (Fig. 9C). Thus, they demon
strated that clinical follow-up considering exclusively free mAbs 
concentration may not be sufficient to fully understand the phenomenon 
undergone by mAbs during their residence time. The performance of the 
CE-MS/MS analytical method clearly demonstrated the added value 
advanced MS analysis can bring to study complex biological phenome
non [129]. For CE-MS/MS analytical workflow, comprehensive assess
ment and optimization of the sample preparation was realised in order 
to provide an optimal sample compatibility with both CE separation and 
ESI-MS/MS analysis [108]. Using a similar analytical strategy, 
CE-MS/MS analysis could be used to perform the biosimilarity 
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assessment between different infliximab products concerning in vivo 
stability. In addition, infliximab PTMs characterization was performed 
for serum samples from treated patients [156].

CE-MS/MS was also recently described to investigate the interaction 
between infliximab and a corresponding NADA. In order to determine 
the quantity of NADA in a serum sample, fixed quantities of internal 
standards SIL-infliximab and SIL-adalimumab were introduced to the 
sample. Afterward, affinity purification was performed followed by 
subsequent proteolytic digestion. CE-MS/MS signal corresponding to the 
two mAbs was used in order to determine the proportion of neutralized 
SIL-infliximab compared to unaffected SIL-adalimumab, and deduce the 
initial concentration of NADAs in the serum. Experiments allowed to 
determine the dissociation constant KD of 14.4 nM between infliximab 
and NADAs [92]. In particular, this methodology designed to determine 
KD value from CE-MS/MS data took into account the bivalence of both 
infliximab and NADAs due to their IgG nature. Infliximab-NADAs 
interaction was generated in serum samples to provide an environ
ment similar to in vivo conditions. Another advantage of this method
ology was the ability to investigate infliximab-NADAs interaction 
without any information regarding the amino acid sequence of 
neutralizing ADAs [92]. Considering the excellent characteristics of 
CE-MS/MS analysis, further developments could be envisaged in the 
near future to achieve the simultaneous quantification of therapeutic 
mAbs and corresponding NADAs in biological samples.

5. Challenges summary and future prospects

Considering the complexes phenomena undergone by mAbs, it ap
pears crucial to investigate their outcome after administration in the 
context of treatment follow-up and/or clinical applications. Similarly, 
the so-far unpredictable expression of ADA and their implication urges 
the implementation of relevant approaches for their detection and 
characterization. Different analytical methodologies can be used 
depending on the nature of the information required (e.g. quantifica
tion, structural modifications, interactions characterization) and the 
clinical context.

LBA, with ELISA as the most common alternative, provide mainly 
quantitative information of mAbs and ADA in biological samples with a 
cost-effective and rapid analysis with commonly available instrumen
tation. However, CLIA sensitivity, compared to ELISA, appeared 
particularly relevant for the early identification of adverse immune 
response in the form of ADA expression. Thus, automated in
strumentations were recently developed, opening the wide scale use of 
CLIA for routine quantification of mAbs and ADAs. Even though LBA 
remains mainly for quantitative analysis, ELISA can be used to measure 
molecular interactions with complex experiments and dedicated assays. 
Therefore, SPR represents the method of choice to study mAbs in
teractions with other proteins like the targeted antigen, receptors and 
even ADAs. SPR is capable to measure in a precise manner kinetic and 
equilibrium binding constants to study the affinity of mAbs with 

different types of proteins in a versatile manner. However, various pa
rameters need to be considered for the implementation of SPR which 
may be relatively complex especially for neophytes. The recent intro
duction of MP analysis represents an excellent opportunity for the 
characterization of mAbs molecular interactions. Compared to other 
techniques like SPR or FC, it represents an easy-to-handle technique that 
does not require protein immobilization for the analysis. Thus, MP has 
been used to study complex formation between mAbs and antigens or 
ADAs, while providing precise information regarding the stoichiome
tries in comparison to SPR. Due to the recent introduction of MP, further 
developments taking full profit of the potential of this technique are 
expected in the future to improve its applicability to study protein- 
protein interactions.

MS emerged over the last years as a pivotal tool to study the evolu
tion of mAbs after administration. Indeed, in the context of quantifica
tion in biological samples, MS showed its ability to prevent signal 
interferences from other proteins that was observed in ELISA and to limit 
drastically the occurrence of matrix effects. In complement, MS analysis 
prior hyphenated to a chromatographic or electrophoretic separation 
demonstrated the possibility to obtain primary structure characteriza
tion like the identification of PTMs. Therefore, MS based methodologies 
may provide a novel perspective regarding the structural evolution of 
mAbs after administration. Nonetheless, the implementation of MS for 
the analysis of mAbs and ADAs in biological samples may be restricted at 
the moment to fundamental and investigational clinical applications due 
to the extensive sample treatment required. To further envisage MS 
analysis for the routine follow-up of patients, methodological de
velopments should be performed in the future to reduce the complexity 
and time necessary for the analysis. Moreover, native MS represents one 
of the most advanced types of MS experiments, with demanding 
experimental conditions. Native MS in biological samples could help 
tremendously to improve the knowledge concerning protein-protein 
interactions involving therapeutic mAbs following their administration.
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